Acta Crystallographica Section E

Structure Reports

Online

N-Benzyl-4-(4,4-diphenylbuta-1,3-dienyl)-N-ethylaniline

ISSN 1600-5368

An-Shu Wu, Xiang-Gao Li,* Nan Li and Shi-Rong Wang

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wuanshujxys@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.128$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}$ or $\mathrm{PhCH}_{2}(\mathrm{Et}) \mathrm{NC}_{6} \mathrm{H}_{4}{ }^{-}$ $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CPh}_{2}$, was synthesized by the Wittig-Horner reaction between 4-(N-benzyl- N-ethyl)aminobenzaldehyde and the phosphonate carbanion, derived from 1,1-diphenyl-3-chloropropylene and triethyl phosphite by the Arbuzov reaction. The butadiene fragment has a planar transoid conformation.

Comment

Organic compounds involving the butadiene group have been widely studied due to their important practical applications, most recently in connection with the manufacturing of organic light-emitting diodes (OLEDs) (Li et al., 2005; Satoh et al., 2003) and organic photo-conductors (OPCs) with hole-transport properties (Enokida \& Hirohashi, 1991). In this paper, the structure of a new butadiene derivative, the title compound, (I), is reported. The compound was synthesized by the Wittig-Horner reaction of 4 -(N-benzyl- N-ethyl)aminobenzaldehyde and the phosphonate carbanion, derived from 1,1-diphenyl-3-chloropropylene and triethyl phosphite by the Arbuzov reaction.

(I)

Fig. 1 shows the molecular structure of (I). The butadiene fragment $\mathrm{C} 1=\mathrm{C} 14-\mathrm{C} 15=\mathrm{C} 16$ is planar to within $0.01 \AA$ and has a transoid conformation. Both the $\mathrm{C} 1 / \mathrm{C} 8 / \mathrm{C} 2$ plane and the plane of the C17-C22 benzene ring show substantial deviations from the butadiene plane, forming dihedral angles with

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii.

Received 5 September 2005 Accepted 10 October 2005 Online 15 October 2005
the latter of 13.0 (2) and $17.3(2)^{\circ}$, respectively. The dihedral angles formed by the plane of the C17-C22 benzene ring with the planes of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 8-\mathrm{C} 13$ rings are 44.4 (2) and $108.3(2)^{\circ}$, respectively.

Experimental

A mixture of 1,1-diphenyl-3-chloropropylene ($11.4 \mathrm{~g}, 0.05 \mathrm{~mol}$) and triethyl phosphite ($18.0 \mathrm{ml}, 0.05 \mathrm{~mol}$) was refluxed in xylene (50 ml) for 10 h , and then the xylene was removed in vacuo. After cooling, 4(N -benzyl- N -ethyl)aminobenzaldehyde $\quad(9.6 \mathrm{~g}, \quad 0.04 \mathrm{~mol}$) and dimethylformamide $(100 \mathrm{ml})$ were added to the flask containing the residue. Potassium tert-butoxide ($4.5 \mathrm{~g}, 0.04 \mathrm{~mol}$) was then added in small portions. The resulting mixture was stirred for 5 h and then poured into methanol. The precipitate was separated from the liquid by filtration, purified by silica-gel column chromatography (eluent: toluene-ethyl acetate, 2:1), recrystallized from hexane, and dried to obtain yellow crystals of (I) in 47.0% yield (m.p. 378 K). Spectroscopic analysis: MS (EIS): $416\left(M^{+}+1\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $1.18\left(t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.46\left(m, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 4.50(s, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 6.58(d, 2 \mathrm{H}, J=9.0 \mathrm{~Hz},-\mathrm{CH}), 6.62-6.68(m, 2 \mathrm{H}, \mathrm{ArH}), 6.84$ ($d, 1 \mathrm{H}, J=9.5 \mathrm{~Hz},-\mathrm{CH}$), $7.14-7.40(m, 17 \mathrm{H}, \mathrm{ArH})$. Compound (I) $(20 \mathrm{mg})$ was dissolved in ethyl acetate $(20 \mathrm{ml})$ and the solution was left to stand at room temperature for 4 d , yielding yellow single crystals of (I) suitable for X-ray analysis.

Crystal data

```
\(\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}\)
\(M_{r}=415.55\)
Monoclinic, \(P 2_{1} / n\)
\(a=10.4818\) (17) \(\AA\)
\(b=17.071\) (3) \(\AA\)
\(c=13.460\) (2) \(\AA\)
\(\beta=92.780(3)^{\circ}\)
\(V=2405.8\) (7) \(\AA^{3}\)
\(Z=4\)
```


Data collection

Bruker SMART-1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.947, T_{\text {max }}=0.986$
13469 measured reflections
$D_{x}=1.147 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2899 reflections
$\theta=2.4-23.1^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.40 \times 0.30 \times 0.22 \mathrm{~mm}$

4894 independent reflections
2709 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-13 \rightarrow 10$
$k=-15 \rightarrow 21$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0523 P)^{2}\right. \\
& +0.2552 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}_{\AA^{-3}} \\
& \begin{array}{l}
\Delta \rho_{\max }=0.17 \mathrm{e}^{-} \AA^{-3} \\
\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{array} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0136 \text { (13) }
\end{aligned}
$$

H atoms were positioned geometrically and refined in the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, with the exception of methyl H atoms, for which $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was financed by the National High-Technology Research and Development Programme of China (grant No. 2002AA325050).

References

Bruker (1997). SADABS (Version 2.03), SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Enokida, T. \& Hirohashi, R. (1991). J. Appl. Phys. 70, 6908-6912.
Li, J. Y., Li, Y. Q., Lee, C. S., Kwong, H. L. \& Lee, S. (2005). Chem. Mater. 17, 1208-1212.
Satoh, N., Cho, J. S., Higuchi, M. \& Yamamoto, K. (2003). J. Am. Chem. Soc. 125, 8104-8105.
Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography All rights reserved

